Algorithms and Flowcharts Section 3

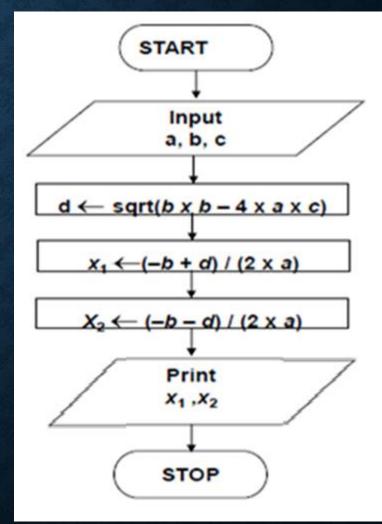
Write an algorithm and draw A flowchart that will calculate the roots of A quadratic equation: $ax^2 + bx + c = 0$

 $d = \sqrt{b^2 - 4ac}$, and the roots are:

 $x1 = \frac{(-b+d)}{2a} \text{ and } x2 = \frac{(-b-d)}{2a}$

Algorithm:

Step 1: Input a, b, c


 $\square Step 2: d = sqrt (b*b - 4 * a * c)$

 \Box Step 3: x1 = (-b + d) / (2 * a)

 \Box Step 4: x2 = (-b - d) / (2 * a)

 \square Step 5: Print x1, x2

□Step 6: Stop

Algorithm To Find The Largest Of Three Numbers

```
Step 1: Input N1, N2, N3
Step 2: if (N1>N2) then
         #(N1>N3) then
                        [N1>N2, N1>N3]
             MAX N1
                            [N3>N1>N2]
            MAX N3
      else
         # (N2>N3) then
                         [N2>N1, N2>N3]
           MAX N2
         else
                            [N3>N2>N1]
           MAX N3
     endif
```

Step 3: Print "The largest number is", MAX

Step4: Stop

Another method

Step-1 Start

Step-2 Read three numbers say num1,num2, num3

Step-3 if (num1>num2) and (num1>num3) then

Print num1 is largest

Else if (num2>num1) and (num2>num3) then

Print num2 is largest

Else

Print num3 is largest

End if

End if

Step-4 Stop

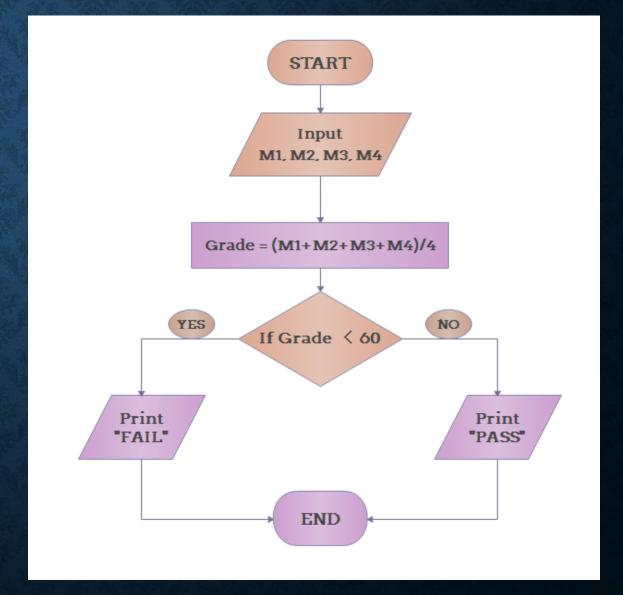
Write an algorithm to determine a student's final grade and indicate whether it is passing or failing. The final grade is calculated as the average of four marks.

Algorithm

Step 1: Input M1, M2, M3, M4

Step 2: GRADE = (M1+M2+M3+M4)/4

Step 3: if (GRADE < 60) then


Print "FAIL"

else

Print "PASS"

End if

Step 4: End

Write an algorithm that accept an integer number from the user, in case of the number is Positive, check and print out whether it is Even or Odd number.

Algorithm

Step 1: Read number from user say N

Step 2: If (N > 0) then

If (N % 2 == 0) then

Print "Number is Even"

else

Print "Number is Odd"

End if

End if

Step 4: Stop

Write An Algorithm That Read Student's Mark As Integer Then Print The Equivalent Grade Depends On The Following Table:

0≤Mark<60	60≤Mark<65	65≤Mark<75	75≤Mark<85	85≤Mark≤100
Fail	Accept	Good	Very Good	Excellent

```
Step 1: Start
Step 2: Read mark
Step 3: If ( mark < 60 ) then
            Print "Fail"
         Else If ( mark < 65 ) then
         Print "Accept"
         Else If ( mark < 75) then
         Print "Good"
         Else If ( mark < 85) then
         Print "Very Good"
        Else If ( mark <= 100) then
         Print "Excellent"
      Else
         Print "Invalid Mark! Try again!"
     Step 4: stop
```

أوجد المخطط الانسيابي (flowchart) بالإضافة إلى كود الشفرة (Pseudo code) لخوارزم وجد المخطط الانسيابي (flowchart) بالإضافة إلى كود الشفرة (X = 0, and Y = 0) لذا ذات قيمة كل منهما عن يقوم بتصفير قيمتي المتغيرين X = 0, and Y = 0 كل منهما عن داوم مع طباعه عبارة X and Y دا دادت قيمه X and Y مع طباعه عبارة X and Y داده التصفير و طباعه قيمه X and Y داده التصفير و طباعه قيمه X المناس ا

Pseudo code

Variable X, Y: integer

Begin

Read (X, Y)

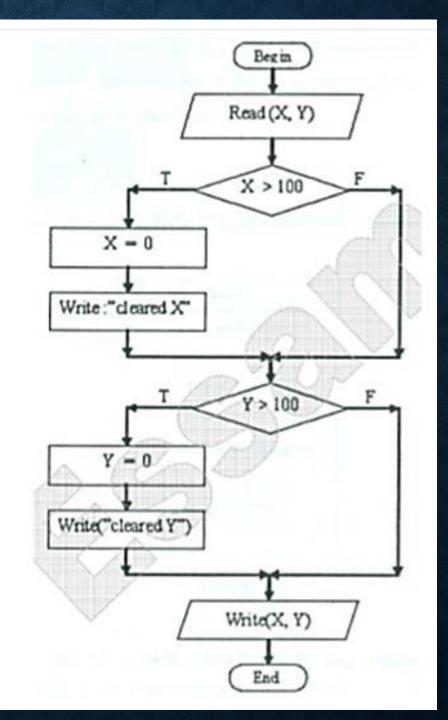
If (X > 100) then

X = 0

Write ("cleared X ")

End if

If (Y > 100) then


Y=0

Write ("cleared Y ")

End if

Write (X, Y)

End

TASK

أوجد المخطط الاتسيابي (Flowchart) وكود الشفرة (Pseudo code) لخوارزم يقرأ أربعة أرقام (Sum) . إذا كان المجموع رقم أرقام (Sum) . إذا كان المجموع رقم زوجي فان قيمة المتغير (Var) تساوي الجذر التربيعي المجموع وإذا كان المجموع فردي فان قيمة المتغير (Var) تساوي مربع المجموع . الخوارزم يقوم بطباعة المجموع (Sum) وقيمة المتغير (Var)

